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Disturbances in the form of pressure fields, source distributions and time-dependent 
bottom topographies are discussed and found to produce similar wave patterns. 
Results obtained for wide channels are discussed in the light of the features of soliton 
reflection at a wall. Comparison with experiments shows excellent agreement. The 
introduction of radiation conditions enables long-time simulation of the development 
of wave patterns in infinite and semi-infinite fluids. A stationary wave pattern is also 
found to emerge for slightly supercritical Froude numbers, but contrary to linear 
results the leading divergent waves may originate ahead of the disturbance. This 
behaviour is due to nonlinear interactions similar to those governing collisions 
between solitons. This study on wave generation by a moving disturbance is based 
on numerical solutions of Boussinesq- type equations. The equations in their most 
general form are integrated by an implicit difference method. Strongly supercritical 
cases are described by a simplified set of equations which is solved by a semi-implicit 
difference scheme. 

1. Introduction 
According to linearized theory a steadily moving ship in an infinite fluid of 

constant depth always produces a stationary gravity-wave pattern in its wake. The 
qualitative properties of this pattern depend on the Froude number F = U(gh,)-i,  
which is the ratio of the speed of the ship and the maximum wave speed. In the limit 
F+O we have the Kelvin ship-wave pattern for infinite depth where two types of 
wave crests, transverse and diverging, are confined to a sector of semiangle 8 = 19.3". 
When F increases this angle increases and approaches 90' in the limit F --f 1-.  For 
F > 1 the transverse waves have disappeared and the angle of the wave sector again 
decreases, roughly according to B = arccos F-'. 

117 two dimensions linearized theory displays a singularity in the limit F + 1 where 
the group velocity coincides with the speed of the ship and nonlinear effects have to 
be crucial. Laboratory studies on moving vessels in comparatively narrow channels 
have revealed that the physical response to this resonance is upstream radiation of 
solitons. The phenomenon was first reported by Thews & Landweber (1935). Later 
experimental investigations have been performed by Graff (1962), Schmidt-Stiebitz 
(1966), Huang et al. (1982). Ertekin (1984) and Ertekin, Webster & Wehausen (1984) 
identified the blockage coefficient as the important geometrical parameter. The 
blockage coefficient may be defined as the ratio of the cross-sections of the ship and 
the channel. Upstream radiation is also observed in comparatively wide channels. In  
such cases three-dimensional diverging waves develop into plane solitons propagating 
upstream relative to the ship. 

The simplest theoretical approach to upstream soliton emission is perhaps to solve 
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equations of Boussinesq or KdV type with a moving pressure field applied to the free 
surface. Both Wu & Wu (1982) and Ertekin et al. (1984) found upstream radiation 
in the two-dimensional (horizontal and vertical) case. I n  a subsequent paper Ertekin, 
Webster & Wehausen (1986) reported some threc-dimensional results obtained from 
the Green-Naghdi equation which is a Boussinesq-type equation with a nonlinear 
dispersion term. Upstream radiation was  still predicted. It must however be noted 
that the calculations were confined to channels too narrow for three-dimensional 
effccts to be very apparent during the generation of the solitons. In  a recent work 
Katsis & Akylas (1987) have focused more thoroughly on the three-dimensional 
features of upstream radiation. Solving a weakly three-dimensional KdV- type 
equation, called the KP (Kadomtsev-Petviashvili) equation, they related the 
formation of two-dimensional crests to the stability of the solitary-wave solution. In  
a preliminary simulation they also found a wave crest becoming partly separated 
from a pressure field moving in an horizontally unbounded fluid. However, this 
calculation was carried out only for a very limited period of time. Therefore it was 
not possible to resolve whether the crest would become completely separated and 
others were to follow, or if a stationary state eventually would evolve. 

Even though the presence of a surface pressure and a ship often produces similar 
effects, important quanitative and qualitative differences concerning wave resist- 
ance, amplitudes etc. may be expected. Karpman (1967), Mei (1976) and Mei 
(1986) have studied shallow-water flow round thin bodies extending throughout the 
water depth. In  the latter work a non-homogeneous KdV equation is used to predict 
upstream radiation of solitons. The theory is weakly three-dimensional in the sense 
that variations across the channel must be sufficiently small for a cross-averaged 
description to be appropriate. Scvcre restrictions are thereby put on the shapes of the 
bodies. The choice of the simple, but rather unrealistic, representations of the ships 
is justified by assuming the blockage coefficient to be the important geometrical 
parameter . 

Most of the theoretical studies so far have concentrated on relatively narrow 
channels. The present report is devoted to genuine three-dimensional wave 
generation in wide channels as well as an infinite medium. Strongly supercritical 
cases are analysed by a simplified theory related to the works of Karpman (1967) and 
Mei (1976), weakly supercritical cases by a fully three-dimensional set of Boussinesq 
equations. A simplified set of equations corresponding to the KP equation is 
formulated, but we have preferred to solve the Boussinesq equations because of their 
wider range of validity. As wave-generating forcing we have applied both a pressure 
distribution on the free surface and a source/sink distribution corresponding to the 
representation of a thin ship in Mei (1986). The analysis of wave generation by a 
pressure field will also apply directly to the case of a shoal in a uniform current. For 
finite channels our results display good agreement with the experiments of Ertekin 
et al. (1984). I n  the present paper much effort is put into revealing the physical 
mechanisms involved in upstream radiation, and we find an interpretation of the 
transition from three- to two-dimensional wave crests that is much further 
developed than the one given by Katsis & Akylas (1987). Formation of plane solitons 
is more closely related to the reflections a t  the sidewall of the channel than to the 
stability of two-dimensional crests. These considerations also give reason for 
doubting the value of the blockage coefficient as the governing parameter for wide 
channels. Our quantitative results support this doubt. In simulation of wave 
generation in unbounded sea, implementation of an effective radiation condition a t  
the open seaward boundary enables us to carry out calculations for large time spans. 
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We conclude that a stationary wave pattern always emerges in unbounded sea. 
However, for Froude numbers sufficiently close to  1 this pattern is extended some 
finite distance upstream. 

2. Basic equations 
Weakly dispersive and nonlinear shallow-water equations have been derived in 

numerous articles and text books. However, inclusion of a time-dependent bottom 
topography corresponding to  a steady flow past a shoal is not customary and we thus 
briefly sketch a derivation of the Boussinesq equations for this case. The equations 
are formulated in a coordinate system with horizontal axes ox* and oy* in the 
undisturbed water level and the vertical axis, oz*, pointing upwards. The asterisks 
indicate dimensional quantities. The fluid is confined to -h* < z* < y* and the 
velocity potential is denoted by @*. We introduce a characteristic depth h,, 
wavelength I, amplitude ah,, and dimensionless variables, according to  

z* = h,z, X* = lx, y* = ly ,  t* = Z(gh,)-i, 
h* = h,(l+ar), y* = ahoy, @* = aZ(gh,)b, p* = apgh,p, 

where p* is an external pressure applied to the surface, p is the density of the fluid, 
g is the constant of gravity and r describes the variations in the bottom topography. 
We note that the relative depth variations are prescribed to be of the same order as 
the non-dimensional amplitude a, which is assumed small. 

2.1. Formulation for the general case 

I n  dimensionless form the governing equations for irrotational, incompressible flow 
become 

s ( r ,+aV@*Vr)  = - Q Z ,  z = - ( l+ar ) ,  (2.4) 

where indices denote partial differentiation, V is the horizontal component of the 
gradient operator and c = hi/Z2 which, according to the long-wave assumption, is 
small. Provided the lateral boundary conditions and the initial conditions are 
independent of z to zeroth order in E the above equations imply 

@(x, y ,  2, t )  = @b, y ,  0, t )  + O ( 4 .  (2.5) 

A depth-averaged velocity potential is defined by 

q5 = ( l+a(r+y))- l  @dz. 
- ( l+ar)  

Using (2.5) and (2.6) the depth-averaged velocity can be expressed 

u = Vq5+0(2,ae). (2.7) 

The simplicity of this equation is crucially dependent on (h* - h,)/h, being of order a. 
From (2.7) and the requirement of volume conservation in a vertical fluid column we 
find 

qt +r ,  = -V.{( 1 + a(r+ 7)) V#>+ 0 ( c 2 ,  a€). 
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Integration of (2.1) combined with (2.3) and (2 .5)  gives 

(i5 = @ l z = a l l - ~ € T t - ~ € V ' $ + 0 ( € 2 , 0 1 E ) .  (2.9) 

Again the simplicity of the expression is due to the restrictions on the size of the 
depth variations. Eliminating yt using (2.8) and substituting @ I z e a g  from (2.9) into the 
Bernoulli equation (2.2) we obtain 

4 ++(v(i5)'+y +p--6ertt -&v24 = 0(e2, ole), (2.10) 

where 4 is defined as $ t .  The redefinitions = ~ + r ,  jj = p - r -  ( € 1 2 )  rtt will make (2.8) 
and (2.10) identical to what is obtained by setting r = 0. To order (e2, ole) the pressure 
field jj thus produces the same stationary or periodic wave pattern in the far field as 
the shoal. For this reason we have performed calculations only for r = 0. The 
formulation of the Boussinesq equations given by (2.8) and (2.10) is the one we have 
preferred to solve numerically. We shall nevertheless briefly remark on a parabolized 
version of these equations. If the variations in the y-direction are small, all nonlinear 
and dispersion terms involving y-derivatives may be dropped to give 

(2.11) 

(2.12) 

where the tildes are omitted. These equations have similar range of validity as the 
KP equation used by Katsis & Akylas and will provide an appropriate description 
of ship wave patterns for which the crests are nearly parallel to the y-axis. Equations 
of this type will thus become invalid for large Froude numbers and for short-crested 
waves in the wake if F - 1 .  Compared to the KP equation the set (2.11) and (2.12) 
is considerably simpler to solve numerically. 

2.2 .  The solitary-wave solution 

For a solitary wave we may write V(i5 = U(x-ct)i, 7 = q(x-ct), 01 = A,  where i i s  the 
unit vector in the x-direction and A is defined as the maximum value of y*/h,. 
Substitution into (2.8) and (2.10) followed by some standard integration gives 

7 = U(c-AU)-l, (2.13) 

(2.14) -&AU3+$3Y'+A~'U+~A-'  log(1 - A U / c )  = &(U')', 

C' = ( l + A ) ' { ( l + A )  l ~ g ( l + A ) - A } ( & l ~ + $ A ~ } - ~  = 1+A+O(A2) .  (2.15) 

To assure full consistency between the solitary-wave solution and the basic equations 
we integrate (2.14) numerically with high accuracy instead of using approximate 
analytical expressions. 

2.3. Boussinesq equations for the strongly supercritical case 

If an external pressure distribution of form p = p(x-Ft), with F- 1 = 0(1), is 
applied to the free surface the generated wave pattern must be expected to become 
stationary in a reference frame following the pressure field. In  such cases the field 
quantities can be expressed in terms of y and the new ' time ' variable 7 = t - x/F. Mei 
(1976) derived general dispersive long-wave equations for this regime as well as 
simplified versions of more limited ranges of validity. Below we formulate a set of 
Boussinesq-like equations more appropriate for direct numerical solution than the 
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equations reported by Mei. Invoking 7 and setting r = 0 in the Bernoulli equation 
(2.10) and the continuity equation (2.8) we obtain 

$7 + $a($, I 2  + ($,I2 + 71 + P - %($yyT + F-'$rTr) = O(e2> (2.16) 

71, = - ( ( 1  + a71)$,>, --F-2{(1 + ~71)$A+ 0k2, 4. (2.17) 

Provided F -  1 = O(1) the solution at ,  say, 7 = 71 is influenced only by the domain 
7 < 7' and a method involving explicit advance in 7 may be formulated. Solution of 
(2.16) and (2.17) as an initial-value problem is however impossible because the last 
term in (2.16) gives rise to free wave modes with exponential growth in 7. From (2.16) 
and (2.17) we extract the dominant balance 

( 1  -F-2)$TT-$yy+pr = O(e,a).  (2.18) 

As long as ( I  - F )  = O( 1) & O(e, a )  this equation can be used to  eliminate the qhT,, term 
in (2.16). The order of the equation is then reduced by introduction of the velocities 
v = $y, u = - F-'$, to achieve a set containing three equations for 7,  u, v : 

v, = -Fu, + O(e2,  a€), (2.19) 

7, = F-'{ ( 1 + ~ r v ) ~ } ,  - { ( 1 + "$)v}, + O ( 2 ,  a€) ,  

u -+aFl(u2 + v2) = F-l(Y/ +$) +$€( 1 -F-2)-1Uyy + O ( 2 ,  a€) ,  

2; = p + g"F2 - l)-lpTT. 

(2.20) 

(2.21) 

where the pressure term is modified according to 

(2.22) 

Equation (2.19) is recognized as the irrotational requirement and may be replaced by 
the y-component of the momentum equation, which is found by differentiating (2.21) 
with respect to y and application of (2.19) : 

v,+;a(U2+v2)y = -(y+$),+i€(l  ---*)--1vyyr+0(€2,a€). (2.23) 

The set (2.20), (2.21) and (2.23) will also describe the limiting case F = 00. The 
equations above may also describe other problems such as normal reflection of 
solitons from a straight wall. 

Outside a pressure field in infinite fluid we would expect to find only outgoing 
waves in the y-direction. In  the far field the motion may therefore be described by 
a KdV equation as reported by Karpman (1967) and Mei (1976). The development 
of the wave pattern in the downstream direction will thus correspond closely with 
time evolution from an initial disturbance in two dimensions. The latter problem is 
extensively analysed by use of the inverse scattering technique. Hence, a pressure 
field moving with supercritical speed must be expected to  create a number of 
divergent solitons followed by a modulated wavetrain. 

3. Numerical methods 
The approximation to a quantity f a t  a gridpoint with coordinates (PAX, yAy, d t )  

where Ax, Ay and At are the grid increments, is denoted by f x b .  To improve the 
readability of the difference equations we introduce the symmetric difference 
operator 6 , :  

1 
6,  ff; = ($;, -.@ 2, Y 1 1  (3.1) 
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and the midpoint average operator : 

(.p)f) = ;( fp;, +f$!;, J .  

Difference and average operators with respect to the other coordinates y and t are 
defined correspondingly. We note that all combinations of these operators are 
commutative. To abbreviate the expressions further we also group terms of identical 
indices inside square brackets, leaving the super- and subscripts outside the 
bracket. 

3.1. Numerical integration of the full Boussinesq equations 

For the set (2.8), (2.10) we use a grid staggered in time only, calculating the 
quantities y&), 4:;) and $I;+;). According to the discussions in 52.1 we set r = 0. The 
difference equations read 

[ 6 , ~  = - 6,.( 1 + C L ~ / ~ ? ' )  6, $1 - a,{( 1 + arYqt) 6, $} -&( Ax2 + Ag2) 6; 6; $]17;), (3.3) 

[d +T + 7 +$ -{+ +&(At' - AX')} 6: 4 -{ie +&(At' - Ay')} 6; 4 = O]jT.j', (3.4) 

where 2; = p+&At2ptl  (3.5) 

[T'"' = iCL{(6, py-3 (6, p ) ( n + ; )  + (6, p)cn-t) (6, p)(fi+;)}]i,j. (3.6) and 

I n  addition we have the kinematic relation 

[6, $ = 4 1 3  (3-7) 

The explicit appearance of the grid increments in (3.3)-(3.5) is due to the introduction 
of correction terms to the scheme obtainable by straightforward term-by-term 
midpoint discretization of (2.8) and (2.10). If the grid increments are comparable 
with the depth, the dimensionless quantities Ax, Ay  and At become O ( k ) .  Hence the 
correction terms may be comparable with the dispersion terms and a simple midpoint 
scheme will be inaccurate. Inclusion of the correction terms will, on the other hand, 
reduce the discretization error in 7 to the same order as the error in the Boussinesq 
equations themselves. This is demonstrated by ignoring nonlinearities and dispersion 
terms in (3.3)-(3.5) and eliminating $ from the resulting equations to obtain 

[ S f q  = (6:+6;) ( r + p ) + & ( A t ' - A x 2 ) 6 ~ ( r + p )  + & ( A t Z - A y ' ) 6 i ( r + p )  
+iAt26i  6$(r + p )  +&At'@;+ 62y)pl, + #(Ax4, b y 4 ,  ...)I$:;, 

which is a fourth-order scheme for the linearized hydrostatic equations. Second-order 
errors will thus be introduced through nonlinear and dispersion terms only and the 
discretization error for q will be O(Ax4, ..., aAx', &Ax2, . ..) which equals O(e2, C L E )  

provided Ax, A y ,  At = O(&).  A corresponding high accuracy is not to be expected for 
the velocity potential $. 

The advance from t = nAt to t = (n+ 1)At is performed through three steps: 
calculate $(n+i) from the kinematic relation (3.7), solve the implicit equations for 
r(lZ+l) defined by (3.3) and complete the computational cycle by solving the discrete 
Bernoulli equation for d("+l). The continuum equation (3.3) gives strongly diagonal 
dominant coefficient matrices provided the velocities, 6,$ and 6,$, are much less 
than 1 .  Hence we apply a simple point-by-point iteration scheme for which a new 
generation of approximations is obtained by substitution of values from the old 
generation into the right-hand side of (3.3). This procedure assures conservation of 
volume and 5-6 iterations will generally suffice when values from the previous time 
step are used for initialization. For the discrete Bernoulli equation (3.4) the diagonal 
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dominance is too weak for a pointwise iteration procedure to be efficient. Instead an 
alternating direction implicit (ADI) method is used : sweeps in the x-direction, with 
implicit representation of terms not involving differentiation with respect to  y, 
alternate with corresponding sweeps in the y-direction. If smoothed values from the 
previous time step are used for initialization two iterations will suffice in most cases. 
If the parabolized equations (2.11) and (2.12) are discretized in the above manner 
both the continuity and the Bernoulli equation give one tridiagonal equation for each 
row of the grid parallel to the x-axis and no iteration is needed. However, within the 
range of validity for (2.11) and (2.12) one iteration will suffice for solution of (3.4). 
In  addition the time step often has to be reduced for the discretized versions of (2.11) 
and (2.12) owing to the weaker implicitness inherent in these equations. The 
reduction in CPU time will thus not be larger than 25-50%. A numerical scheme 
similar to the present one has been applied to  a set of Boussinesq equations valid for 
depth variations of order one by Pedersen & Rygg (1987). Most of their analysis and 
tests concerning stability, convergence etc. are relevant also in the present context. 
The stability criterion for the linearized difference scheme without correction terms 
reads 

which is less restrictive than the standard Courant condition. Favourable choices for 
At are thus often enabled (ratio AxlAt close to a phase velocity etc.). The corrected 
scheme is also slightly superior with respect to stability. 

3.2. Solution of the simpli$ed equations by downstream marching 

Solution of the equations valid for F -  1 = O(1) will demand neither considerable 
computer time nor storage. The computational domain may thus be chosen large 
enough for radiation conditions to be superfluous. Again we use a staggered grid to 
calculate the quantities ~ j " ) ,  uj"), v@ where the sub- and superscripts correspond to 
the values of y and 7 respectively. Discrete versions of (2.20) and (2.21) read 

[6,{7 - FP1( 1 + ay)u} = - 6,{( 1 + ~ 1 ~ ~ 7 ' ) ~ } ] j " 4 ) ,  (3.8) 

k- (3.9) 

where [62]]l") = [( v )  -x ("-a) {(  v )  -5 ("-$ -J'A~&,(GX)(")}]~. (3.10) 

Assuming that u("-~) ,  7("-l) and v("-;) are already calculated, (3.8) and (3.9) give a ' 7 -  
diagonal nonlinear' set of equations for ujn) and 76"'. The nonlinear terms are 
comparatively small and the set is thus easily solved by a simple iterative technique. 
A discretized version of (2.23) reads 

where 

(3.11) 

This equation defines a set of linear tridiagonal equations for v("+;). Provided P =I= 00 
(3.11) may be replaced by a discretized version of (2.19): 

[6 ,  v = - F6,  u]j;g. (3.12) 

Setting F = 0, F l u  = 0, (3.8) and (3.11) become a scheme for the two-dimensional 
Boussinesq equations. This scheme is identical to a scheme obtained from the two- 
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dimensional versions of (3.3) and (3.4) by omitting the correction terms, applying the 
difference operator 6 ,  to the Bernoulli equation and finally recognizing the quantity 
S,# as v. After linearization the stability criterion for (3.8) and (3.9) combined with 
either (3.11) or (3.12) becomes 

4€ 

3 ( 1 - F 2 )  
At2 < ( 1 - F 2 ) A y 2 +  

and a favourable ratio between the grid increments is given by At = (1 - F-’)$Ay. 

4. Results 
4.1. Computational domain  and boundary conditions 

The scaling introduced in 9 2 is based on characteristic wavelengths and amplitudes 
for which there are a variety of different options. This procedure of scaling is 
convenient for derivation and discussion of the equations, but will often tend to 
obscure quantitative results. To increase the readability of figures and tables, we 
thus define a new scaling where the length unit corresponds to  the equilibrium depth 
and the time unit corresponds to the time elapsed while covering a distance equal to 
one depth with the linear shallow-water speed. The new non dimensional quantities 
are given by 

In the remainder of this section the primes are omitted. 
All definitions and discussions in this subsection are done with regard to the fully 

time-dependent Boussinesq equations (2.8) and (2.10). Throughout 94 we assume 
either a pressure field or a source distribution along the x-axis, moving in the positive 
x-direction with a constant velocity which, in the present scaling, equals the Froude 
number. We restrict ourselves to the study of symmetric geometries and confine the 
computational domain to xo < x < xo+S,  -b, < y < 0,  where y = 0 corresponds to 
the symmetry line of the channel and y = - b, to  a sidewall or an open boundary. At 
intervals the computational window is shifted in the positive x-direction to prevent 
any part of the wave system reaching the upstream boundary. At the downstream 
boundary, points are correspondingly excluded from the domain causing a local 
distortion of the solution. This disturbance will however not be noticeable further 
upstream unless the Froude number is considerably less than 1 .  The numerical 
integration is always started from rest a t  t = 0. All reported calculations are 
performed with grid increments Ax, Ay and At close to unity. Estimations based on 
grid refinement tests and simulation of solitary-wave propagation prove this 
discretization to be sufficiently accurate. As an example we observe relative errors of 
order 2% for cases giving waves of height 0.3 depths (a - 0.3). 

For convenience we have selected simple analytical expressions for the pressure 
fields and source distributions : 

( 4 . 1 ~ )  Y-Yo 

The function Y is defined by 

Y ( 6 )  = $ ( l + c o s ~ 6 )  
Y ( 0 )  = 0 

for 161 < 1,  

for 101 > 1. 

(4.1 b )  

(4.2) 
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Equation (4.1 a)  defines a continuously differentiable pressure field having elliptic 
isobars and attaining a maximum value, pa ,  a t  the moving point x = x,+Ft, 
y = yo. Except for the case described in 54.4 we always have yo = 0. The normal 
velocity (4.16) corresponds approximately to a thin, moving body defined by 
y = -qY and gives a continuous and sinusoidal (one period) sink/source distribution. 
Naturally the integrated effects of this distribution depend on the surface level a t  the 
boundary. In  the absence of a flux through the boundary y = 0 a symmetry condition 
is applied to assign values to  the fictitious quantities a t  y = iAy. If a normal velocity 
is specified we use (4.lb) and 

(4.3) 9 y  = (1 + O(e ,  a ) )  qyw 

which follows from the Bernoulli equation (2.10). When fictitious values obtained by 
(4.3) are substituted into the discretized continuity equation relative errors of order 
(ae,a2) are introduced and the overall accuracy of the model is maintained. 
For channels of finite width, b ,  a symmetry condition is applied to the boundary 
y = - 6, = - b. In  the case of an infinite fluid we have to deal with an open boundary. 
Formulation of correct radiation conditions for nonlinear problems is generally very 
difficult. In  the present case this task is substantially simplified because the system 
of outgoing waves consists of a series of recognizable wave crests which become 
completely separated provided the distance from the disturbance is large enough. At 
y = - b, we may thus apply a radiation condition of the Sommerfeldt type : 

where c is the phase velocity and $ is the angle between the direction of wave 
advance and the x-axis. Using spline interpolation the quantities c and $ are found 
for each wave crest in the vicinity of the open boundary. The radiation condition 
cannot be expected to be effective unless the distance b, is large enough for the crests 
to be separated and to display sufficiently slow variations with respect to shape, 
speed and orientation. We note that, apart from errors due to discretization and 
interpolation, a solitary wave will be treated exactly by the procedure described 
above. Accurate calculations of $ and c demand that interpolation is performed for 
a large portion of the domain adjacent to the boundary, particularly for relatively 
coarse grids, As a compromise between accuracy and CPU time usage we have settled 
for extending the interpolation throughout a 15-point-wide band following the 
boundary. Testing indicates that introduction of errors of up to 2-3 % sometimes 
may be expected for this choice. Channels of finite width with absorbing lateral 
boundaries may also be described by implementation of a radiation condition. 

We define the blockage coefficients by 

for the source and pressure distributions respectively. The wave resistance 
experienced by a pressure field is given by 

C, i+Cyj=  - pVqdxdy, (4.6) ss 
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and the net momentum flux associated with a source distribution is 
P 

I ,  i + I u j  = (1 + 7)  qY, V$(x, 0, I)  dx, J (4.7) 

where i and j denotes unit vectors in the x- and y-direction respectively. In  the latter 
case -Iz is interpreted as the wave resistance. 

4.2. Upstream waveS in wide channels 

In their experiments Ertekin et al. (1984) observed upstream radiation in channels 
with half-width 24.4 depths and blockage coefficient 0.019. In  subsequent paper 
Ertekin et al. (1986) report on numerical calculations for channels of half-width 4, 
which is too small to reveal the mechanisms for generation of two-dimensional 
solitons in a genuine thrce-dimensional geometry. Katsis & Akylas (1987) performed 
simulations in wider channels where this transition is clearly visible. In  addition they 
made a study of the evolution of free, laterally non-uniform crests in a channel and 
concluded that a stable two-dimensional soliton develops through interactions with 
the sidewalls. However, they addressed this wall effect merely by a vague reference 
to diffraction. 

We shall compare our theoretical results to the measurements of Ertekin et al. 
concerning their largest channel width, and perform calculations for different 
combinations of parameter values, to examine the importance of the blockage 
coefficient and channel width. We have combined thc three half-widths b = 10, 20, 
40 with three different pressure and source distributions, which are denoted by (i), 
(ii), (iii) and described in table 1.  

Different stages during the development of the wave patterns for pressure field (i)  
and the two Froude numbers 1.4 and 1.05 are depicted in figure 1. For F = 1.4 the 
diverging waves rapidly form a stationary criss-cross pattern through reflections 
from the sidewalls. Regarding the build-up of the leading diverging wave for 
F = 1.05 the most striking feature is perhaps that no more than scarcely visible 
reflection is ever present. Instead a high stem perpendicular to the wall is created and 
continuously catches up with the diverging wave until an almost purely plane wave 
is formed. This is clearly the phenomenon called Mach reflection as described by 
Wiegel (1964), Miles (1977 a, b ) ,  Melville (1979) and Funakoshi (1980). During the 
growth of the stem the part of the wave crest a t  the ccntreline of the channel slowly 
outruns the pressure field, indicating that the leading diverging wave may also leave 
the pressure field in the absence of a sidewall. We note that the Mach-stem effect not 
only straightens the leading diverging wave but also causes a growth of the 
amplitude which, according to (4.6), increases the wave resistance and speeds up the 
separation from the pressure field. Thus, except for extremely wide channels, soliton 
radiation cannot be described as the two separate events of emission from the 
pressure field and straightening of the crests caused by the channel walls. The Mach 
stem playing such a dominant part during upstream radiation makes it lcss likely 
that the blockage coefficient is the only essential geometrical parameter. With 
exception of the neighbourhood of the pressure, comparison of surface profiles to the 
exact solitary wave, given by (2.13)-(2.15), shows deviations hardly exceeding 
expected discretization errors by the last stages depicted in figure l c .  After a crest 
has left the pressure field, it very quickly attains the shape of a solitary wave 
throughout its width. After a few solitons are generated the emission becomes regular 
and a uniform train of solitons is produced. Upstream radiation also occurs for 
F < 1.0 but in this case the amplitude decreases for each soliton generated and no 
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Pressure Source 

P.3 R L  9 L 

( i )  0.1 10 12 0.5 12 
(ii) 0.05 10 12 0.25 12 

(iii) 0.05 5 12 0.125 12 
(E) 0.1147 10 12 0.5734 12 

TABLE 1. Source and pressure distributions 

state of periodic emission is achieved. This is in agreement with earlier results for 
narrow channels (Wu & Wu 1982; Mei 1986). 

The pressure and source distributions denoted by (E) in table 1 are intended to 
correspond to the case b* = 244 cm, h* = 10 cm and B = 0.0235 from Ertekin et al. 
This means that the blockage coefficients and channel widths are equal and that the 
lengths of the disturbances are of roughly the same size. From their sketches of the 
experimental set-up and the time histories a t  fixed wave gauges it may be deduced 
that the last wave gauge is located approximately 230 depths upstream relative to 
the initial position of moving vessel and midway between the symmetry line and the 
sidewall of the channel. This distance seems, however, to vary slightly from one 
experiment to another and is not explicitly defined or tabulated. Ertekin et al. 
reports the height of the leading soliton that will also emerge for subcritical Froude 
numbers. We shall denote this amplitude by A,,,. According to our theoretical 
results the leading crest is still developing a t  x = 230, especially for the larger Froude 
numbers, and the uncertainties regarding the gauge locations may thus cause 
noticeable deviations. Nevertheless, with the exception of F = 1.15, both sets of 
computed A,,, agree excellently with the experiments, as shown in figure 2 (a) .  For 
high Froude numbers we find significant differences between A,,, and the amplitudes 
of both leading and periodically generated solitons at  x = co. Experimental 
determination of the period of soliton generation is difficult because of the limited 
sizes of the laboratory wave tanks. Ertekin et al. do report measurements of a 
quantity denoted by T, which might give an indication of the value of the period 
relative to a reference frame following the disturbance. The definition of T, reads 

where Tf is the time elapsed between the two first maxima a t  x = 230 and C is the 
averaged wave celerity for the leading crest between the two last gauges. Because the 
difference C - F  is small, T, is very sensitive to even minor alterations in wave 
speeds, gauge locations etc. Against this background the agreement between 
theoretical and experimental T,, as depicted in figure 2 ( b ) ,  must be regarded as 
satisfactory. No proper theoretical estimation of Tf for F = 1.15 is possible because 
the second wave crest is insufficiently developed. Anyway, for the higher Froude 
numbers the second wave is not yet separated from the disturbance a t  x = 230 and 
its appearance a t  this stage may depend on details concerning the initial conditions 
etc. (see also discussion in Mei 1986). 

Amplitude A and period T for the generated train of solitons are displayed in figure 
3 for b = 10, 20, 40 combined with different disturbances from table 1. The period T 
is defined relative to a frame of reference a t  rest. For the highest Froude numbers 
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t = 50 

X 

FIGURE 1 (a-b). For caption see facing page. 

allowing upstream radiation we find amplitudes too large for the Boussinesq 
equations to provide quantitatively good results. It is thus not considered worthwhile 
estimating accurate upper limits for F ,  denoted by F,, for the radiative regime. Upper 
and lower bounds for F, are, however, given in table 2. The results in figure 3 confirm 
earlier observations that the blockage coefficient B determines the amplitude of the 
radiated solitons. The period is, on the other hand, not particularly related to B and 
the limit F, shows no clear dependence on B. Keeping B fixed we find that the period 
decreases with the half-width b as shown in figure 4. Both amplitude and period 
increase monotonically with the Froude number. From estimation of wave speeds in 
the numerical simulations it is found that the difference in speed between the 
radiated waves and the moving disturbance does not tend to zero when F approaches 
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t = 100 

t =  150 

t = 200 

t = 250 

t = 3 0 0  

FIQURE 1. Contour plots of the surface elevation a t  different values o f t  for pressure field (i) (see 
table 1) and b = 40. The dashed semicircles indicate the locations of the pressure fields. Solid lines 
show positive contour lines. (a) F = 1.4, equations (2.20)-(2.23), contour interval = 0.02. ( 6 )  F = 
1.4, full Boussinesq equations, contour interval = 0.02. (c) F = 1.05, full Boussinesq equations, 
contour interval = 0.04. Only a length of 50 depths of a total of S = 80 is displayed. The symmetry 
line and the sidewall of the channel correspond to the upper and lower horizontal lines 
respectively. 

F,. This is different for the stronger nonlinear cases reported by Ertekin et al. for 
which the amplitudes eventually reach the theoretical maximum for solitary waves. 
To explain this behaviour we have to study in some detail the reflections occurring 
a t  the sidewalls and the interaction between the Mach stem and the disturbance 
which are described at the beginning of this subsection. First, F, is related to the 
largest Froude number for which the leading diverging wave produced by the 
disturbance in an unbounded sea would be subjected to Mach reflection a t  a wall 
parallel to the x-axis. Even though the discussion of waves in a horizontally 
unbounded fluid belongs to the next subsection we thus make a preliminary study 
concerning pressure field (ii) in this case. For F larger than 1.1, say, we do not observe 
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FIGURE 2. (a )  Amplitude versus Froude number : + , measurements of A,,, from Ertekin et al. for 
the case b* = 244 em, h* = 10 cm; x ,  A,,, for b = 24.4 and pressure with R = 10, L = 12, 
p ,  = 0.1147; 0, A,,, for b = 24.4 and source with L = 12, q = 0.573; A, amplitude of the leading 
soliton as x + 03 for the source ; V, amplitude of the periodic solitons generated by the source. In 
all cases we have B = 0.0235. For F = 1 it is uncertain whether a periodic state is reached or not. 
( b )  The 'period' T, versus Froude number. Symbols as for (a) .  

any noticeable upstream influence of pressure (ii) moving in an unbounded sea. In 
figure 5 we have depicted the amplitude A and the angle $ between the x-axis and 
the direction of wave advance for the leading diverging wave at a distance 
corresponding to y = - b = - 20. Above F - 1 . 1 1 ,  A ( F )  and $ ( F )  are slowly varying 
functions ; in the neighbourhood of F = 1.1 abrupt variations clearly indicating some 
qualitative changes in the solutions do however occur. The discussion of this feature 
is postponed to the next subsection. Predictions, based on the present theory, of the 
critical angle for transition to Mach reflection of solitons give $c = 20.3" for A = 0.05 
and $, = 26.9' for A = 0.1 (see the Appendix). Therefore, Mach reflection will 
probably occur f o r F  = 1.125 ( A  = 0.091, $ = 23.3") but not for F = 1.15 ( A  = 0.077, 
$ = 27.2'), which is consistent with the result 1.125 < F, < 1.15 from table 2. We 
now return to describing the finite-width channel. When the Mach stem extends into 
the pressure field a sharp increase in wave resistance takes place (see figure 6) which 
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(ii) (iii) Disturbance h (i) 
10 - 1.150 < F, < 1.200 1.100 < F, < 1.125 Pressure 
20 - 1.125 < F, < 1.150 1.075 < F, < 1.100 Pressure 

10 - 1.150 < F, < 1.200 1.250 < Fu < 1.500 Source 
20 - 1.150 < F, < 1.160 1.075 < F, < 1.100 Source 

40 1.150 < Fu < 1.200 1.125 < F, < 1.150 1.075 < F, < 1.100 Pressure 

40 1.150 < F, < 1.200 1.250 < F,  < 1.150 1.075 < F, < 1.100 Source 

TABLE 2. Critical Froude numbers for upstream radiation 

T l21 

20 

184 

I 

0 

0 

0 

0 

0 
16 

0 10 20 30 40 50 
b 

FIGURE 4. Period T for an upstream wavetrain as function of the half-width h ,  for fixed B = 0.00625. 

causes further amplification and thereby an increase in the wave speed. This 
amplification will be most pronounced for the highest Mach stems, which occur for 
inclinations close to $.,. Therefore the speed of the radiated waves relative to the 
disturbance will not tend to zero in the limit F + F;. These effects explain the very 
high amplitudes observed for Froude numbers close to Fu. From the above discussion 
it also follows that F, for wide channels will vary slowly with b and may approach a 
limit different from 1 when b + 00. 

4.3. Wave patterns in an unbounded sea 
As noted in 34.2 the graphs in figure 5 give evidence that some sort of regime 
transition occurs near F = 1.1 for pressure (ii) in an unbounded sea. A more detailed 
investigation of the wave fields shows that the sudden increase in amplitude of the 
leading wave as F is decreased toward 1.1 is accompanied by a forward shift of its 
position relative to the pressure field. A second diverging wave originating from the 
former part of the pressure field also appears. At some lower Froude number this 
pattern is repeated and a second wave crest is moved into an upstream position. 
Wave patterns for F = 1.11, 1.09 and 1.05 are displayed in figures 7-9. For all cases 
investigated, a stationary wave pattern with a finite number of wave crests located 
upstream is reached for large t. The time span needed to develop a steady state is 
large, however, often corresponding to moving the pressure field some thousands of 
depths. 
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At the symmetry line ahead of the pressure field the upstream crests are situated 
close to each other and their heights decrease in the upstream direction. As we move 
toward the open boundary the height variation is reversed and the distances between 
the crests increase. For large y the system is split into a sequence of completely 
separated straight-crested solitons. Generally the upstream waves are followed by a t  
least one crest originating from within the disturbance that also attains the shape of 
a soliton. The hindmost upstream wave remains in contact with the pressure field to 
give an input of momentum and energy which counterbalances the total lateral 
radiation in the upstream domain. The upstream transport of these quantities is 
probably achieved by the same sort of mechanisms that govern the collision and 
momentum exchange between two slightly different unidirectional solitons. Ahead of 
the pressure field the crests are well within 'collision range' for solitons of 
corresponding heights and the shape of every upstream wave resembles the shape of 
a soliton. Some qualitative deviation does appear a t  the tail of the hindmost crest 
which is directly influenced by the pressure field. This is however irrelevant as far as 
the interaction between the crests is concerned. The amplitude decrease in the positive 

FIGURE 5.  Amplitude A and orientation 9 a t  y = -20 for the leading divergent wave produced by 
pressure field (ii) in an infinite medium. The lines correspond to the solution of equations 
(2.20)-(2.23), the ‘plus’ marks to results obtained by the full Boussinesq equations. 
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FIGURE 6. The wave resistance C, for F = 1.125, b = 20 and (a) pressure (ii), (b) source (ii). 

x-direction clearly indicates an upstream transport of energy and momentum. As an 
example we consider the two upstream crests for F = 1.05 and pressure (ii) (figure 9). 
At y = 0 these waves have heights 0.114 and 0.134 respectively and are separated by 
a distance d = 10.81. If two unidirectional solitons of amplitudes 0.1 and 0.16 collide 
the exchange of momentum and energy occur for d less than, say, 15 and larger than 
9.9, which is the closest the two crests ever get. At one intermediate stage we find two 
peaks of amplitudes 0.113 and 0.136 separated by a distance d = 10.3. The collision 
is analysed by numerical integration of the Boussinesq equations (2.8) and (2.10) for 
the two-dimensional case. As shown in figures 7-9 a third soliton-shaped crest 
appears in addition to the two discussed above. This is however an 'ordinary 
diverging soliton ' and does not count as an upstream wave. Nevertheless, according 
to figure 7(c,d) this wave may, a t  least to some extent, contribute to the upstream 
energy tranport through interactions with the hindmost upstream wave. 

Table 3 contains the number of upstream waves produced by different 
combinations of pressure fields and Froude numbers. Some results for a moving 
source are also displayed in the table. Again a source and a pressure field give rise to 
very similar effects. One might suspect that the generation of a crest ahead of the 
disturbance is due to an imperfection of the radiation condition. However, alteration 
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FIGURE 7 .  Contour plots of 7 for stationary wave patterns produced by pressure (ii) in an infinite 
fluid. The plots in (a)-(c) display only parts of the computational domains, and the contour interval 
is 0.02. ( a )  F = 1.11; ( b )  1.09; (c) 1.05; ( d )  1.05, the total computational window is depicted. 

of the position of the free boundary has only a minor effect on the generated wave 
patterns, thereby indicating that this is not the case. 

4.4. A moving disturbance along a single wall 

A pressure field moving along a wall in semi-infinite sea will correspond to two 
separated fields moving in an infinite fluid, Therefore, one may assume that a 
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FIGURE 8. Perspective plot of the wave pattern generated by pressure (ii) in an unbounded fluid 
at  P = 1.05 (the same as in figure 7c,  d) .  The half-plane y < 0 is viewed from behind and across the 
x-axis. 

stationary wave pattern is produced in this case as well. One principal difference 
from the previous cases is the presence of a lateral component of the wave resistance. 
It also turns out that  the evolution of a steady state displays stronger and more 
persistent fluctuations than those observed for an unbounded fluid. The components 
of the wave resistance for the case F = 1.05, pressure (ii) and yo = -40 = -4R are 
depicted in figure 10. While the longitudinal component displays moderate 
fluctuations from an average value of approximately - 0.075 the lateral component, 
C,, changes sign several times and reaches a maximum absolute value of about 0.005. 
Nevertheless, the integrated effect of C, corresponds to  a repulsion from the wall. 

5. Conclusion 
Upstream radiation of solitons has been predicted for channels as wide as 100 

depths and blockage coefficients down to 0.006. A pressure field applied to  the surface 
and a source distribution along a line represent two clearly different ways of 
modelling a ship. The fact that  the two representations are generally found to 
produce very similar results demonstrates their applicability. I n  previous works 
several authors have stressed the significance of the blockage coefficient as the 
governing geometrical parameter. I n  the present calculations the blockage coefficient 
still determines the amplitude of the generated train of solitons but not its period or 
the limiting Froude number for which upstream radiation occurs. Upstream 
radiation in wide channels is closely related to the phenomenon of Mach reflection. 
The formation of two-dimensional crests and the transition between the radiative 
and the non-radiative regimes are appropriately analysed through the properties of 
Mach reflection. It also follows that we, at least theoretically, must expect upstream 
radiation to occur for channels of any width. 
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FIGURE 9. Cross-sections parallel t o  the z-axis of the wave pattern depicted in figures 7 ( c ,  d )  and 
8. ( a )  The surface elevation a t  y = -0.5 = -tAy that  corresponds to  the row of the grid being 
closest to  the symmetry line. The front of the pressure field is marked by the solid vertical line at 
z = 61.5. We note that  p does not exceed 20% of p ,  until z = 58. ( b )  The surface elevation at 
y = -49.5. 

Pressure field Source 

F 

1 .000 
I .025 
1.050 
1.075 
1.100 
1.125 
1.150 
1.175 

(i) (ii) (iii) 

2 4  - 
3 2 

2 4  2 1 
3 1 0 
2 I -  
- 0 -  
1 
0 -  __ 

~ 

~ 

- - 

( i )  (ii) 

2 6  2 4  
2 5  2 
2 4  1 

TABLE 3. Kumber of upstream wave crests in a horizontally unbounded sea 

3 FLY 196 
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FIGURE 10. The components of the wave resistance, (a)  C, and (13) C,, experienced by pressure 
field (ii) in a semi-infinite fluid. Additional parameters: F = 1.05, yo = -40 = -4R. 

I n  infinite or semi-infinite fluid a periodic solution with upstream radiation of 
waves is impossible owing to lateral energy transport into the far field. From the 
present calculations we conclude that a stationary wave pattern always emerges. 
However, for Froude numbers slightly above 1 upstream influence is still experienced 
in the form of a finite number of soliton-like diverging waves situated ahead of the 
disturbance. In the neighbourhood of the symmetry line these crests interact to 
produce an upstream momentum and energy flux which counterbalances the lateral 
transport into the far field. 

Appendix. Mach reflection 
We consider a single soliton of height A reflecting from a wall a t  an angle of 

incidence +, which is defined as the angle between the direction of wave advance and 
the wall. For large + the incoming wave is subjected to normal reflection for which 
a reflected soliton identical to the incoming one with incidence - $ is produced. On 
the other hand, for + smaller than some $,(A) a different pattern of reflection, 
usually referred to as Mach reflection or abnormal reflection, evolves. 

Mach reflection of solitons has been observed in experiments by Perroud (1957), 
Chen (1962), Sigurdsson & Wiegel (1962), Wiegel (1964) and Melville (1979). A 
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FIGURE 1 1 .  Definition sketch of the Mach reflection pattern : i ,  incoming wave crest ; 
r, reflected wave crest, and s, Mach stem. 

theoretical study of the phenomenon was carried out by Miles (1977a, b)  who 
constructed an asymptotic solution ( t  + co) for the fully developed wave pattern. The 
time evolution of abnormal reflection was later studied numerically by Funakoshi 
(1980). The phenomenon of Mach reflection is not confined to shallow-water solitons. 
On the contrary, as the name indicates, this type of reflection was first thoroughly 
discussed in gas dynamics, where it has been paid considerably more attention. A 
survey of this topic is given by Hornung (1986). Yue & Mei (1980) found theoretical 
evidence of Mach reflection in connection with diffraction of Stokes waves by a thin 
wedge. Abnormal reflection of Stokes waves must be expected to be important for 
formation of two-dimensional waves in the wake of a disturbance moving in a 
channel a t  slightly subcritical speed. 

During Mach reflection of solitons a phase-locked triad of crests is created and no 
stationary wave pattern is reached. The apex of the incoming and reflected waves is 
moving away from the wall a t  a constant angle $a and is connected to it by the third 
member of the triad; the Mach stem. The incidence of the reflected wave remains 
approximately equal to -qC, for $ < $c and its amplitude is less than A and tends 
to zero as $ + O .  A definition sketch of the wave pattern of Mach reflection is given 
in figure 1 1 .  

In  the scaling introduced a t  the beginning of $4 some key results from Miles (1977) 
read 

l l ~ c  = ( 3 ~ ) ' ,  $8 = +($c-$). (A 1)  

The largest amplification at the wall is achieved for $ = $, for which the Mach-stem 
height becomes 4A. Determination of $c by numerical integration in time is not a 
straightforward matter because the development of the Mach stem or the normal 
reflection pattern is extremely slow for @ near $,. The best approach seems to be to 
establish a linear relation between $a and $ and then take as @, the $ for which the 
extrapolated value of $a becomes zero. Such a linear fit is usually excellent for values 
of $ clearly below $c, and tests involving long-time numerical simulations support 
the adequacy of this way of determining the critical angle of incidence. Melville 
(1979) used this technique to estimate $, from his experimental data, but his wave 
tank was too short for the estimations to be appropriate. Because the amplifications 
at  the wall are very large, different weakly nonlinear theories may give significantly 
different values for $.,. Thus, we cannot apply the values given by Miles in the 

3 %  
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Miles Funakoshi 
A Present theory (1977 b)  (1980) 

0.10 26.9OkO.2 31.4' ~ 

0.05 20.3"kO.l 2 2 . 2 O  20.8O 

TABLE 4. Critical angle of incidence ~c for transition to Mach reflection 

discussions of $4. Using the numerical methods described in $2, specifying the 
incoming wave according to (2.13)-(2.15) and treating the reflected wave by the 
radiation condition given in $4 we have calculated I++c for the Boussinesq equations 
(2.8) and (2.10). These values are listed in table 4 together with values obtained from 
(A 1) and a value extracted from the work of Funakoshi (1980) by the extrapolation 
procedure described above. The accuracy limits on I++c., in the first column are 
obtained by grid refinement tests. 
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